Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Human-driven environmental change underlies recent changes in water clarity in many of the world’s great lakes, yet our understanding of the consequences of these changes on the fish and fisheries they support remains incomplete. Herein, we offer a framework to organize current knowledge, guide future research, and help fisheries managers understand how water clarity can affect their valued populations. Emphasizing Laurentian Great Lakes findings where possible, we describe how changing water clarity can directly affect fish populations and communities by altering exposure to ultraviolet radiation, foraging success, predation risk, reproductive behavior, or territoriality. We also discuss how changing water clarity can affect fisheries harvest and assessment through effects on fisher behavior and sampling efficiency (i.e., catchability). Finally, we discuss whether changing water clarity can affect understudied aspects of fishery performance, including economic and community benefits. We conclude by identifying generalized predictions and discuss their implications for priority research questions for the Laurentian Great Lakes. Even though the motivation for this work was regional, the breadth of the review and generality of the framework are readily transferable to other freshwater and marine habitats.more » « less
- 
            ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL.more » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
